Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

نویسندگان

  • Tao Lin
  • Qing Yang
  • Xu Zhang
چکیده

We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Degree Immersed Finite Element Methods for Second-order Elliptic Interface Problems

We present higher degree immersed finite element (IFE) spaces that can be used to solve two dimensional second order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. The interpolation errors in the proposed piecewise p degree spaces yield optimal O(hp+1) and O(h) convergence rates in the L2 and broken H1 norms, respectively, under mesh refinemen...

متن کامل

Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems

This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...

متن کامل

Superconvergence of partially penalized immersed finite element methods

The contribution of this paper contains two parts: first, we prove a supercloseness result for the partially penalized immersed finite element (PPIFE) methods in [T. Lin, Y. Lin, and X. Zhang, SIAM J. Numer. Anal., 53 (2015), 1121–1144]; then based on the supercloseness result, we show that the gradient recovery method proposed in our previous work [H. Guo and X. Yang, J. Comput. Phys., 338 (20...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A partially penalty immersed Crouzeix-Raviart finite element method for interface problems

The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015